JOC_{Note}

Chiron Approach to the Synthesis of (2S,3R)-3-Hydroxypipecolic Acid and (2R,3R)-3-Hydroxy-2-hydroxymethylpiperidine from D-Glucose

Navnath B. Kalamkar, Vijay M. Kasture, and Dilip D. Dhavale*

Department of Chemistry, Garware Research Centre, University of Pune, Pune - 411 007, India

ddd@chem.unipune.ernet.in

Received December 26, 2007

The first chiron approach from D-glucose for the total synthesis of (2S,3R)-3-hydroxypipecolic acid (-)-1a and (2R,3R)-3-hydroxy-2-hydroxymethylpiperidine (-)-2a is reported. The synthetic pathway involves conversion of D-glucose into 3-azidopentodialdose (5) followed by the Wittig olefination and reduction to give the piperidine ring skeleton (8) with a sugar appendage that on cleavage of an anomeric carbon followed by oxidation gives (-)-1a which on reduction affords (-)-2a.

The six membered cyclic α -amino- β -hydroxy acids, namely 3-hydroxypipecolic acids **1a** and **1b** (Figure 1), and their stereoisomers are attractive chiral building blocks for the synthesis of various biologically active natural products.¹ For example, cis isomer **1a** is an important constituent of a naturally occurring antitumor antibiotic tetrazomine **3**,² while the transconfigured acid **1b** is a precursor for potent α -D-mannosidase inhibitor (–)-swainsonine.³ In an addition, α -amino- β -hydroxy acid unit embedded in **1** considered as a ring-expanded homologue of hydroxyproline or constrained analogue of serine and permits their use in conformational and ligand-binding studies involving bioactive peptides and peptidomimetics.⁴ The carboxyl group reduced analogues of **1**, namely 3-hydroxy-2hydroxymethylpiperidine **2**, are known as fagomine congeners^{5a} due to their resemblance to the piperidine iminosugars which

FIGURE 1. 3-Hydroxypipecolic acid analogues.

are promising glycosyltransferases and glycosidase inhibitors.⁶ The (2R,3R)-3-hydroxy-2-hydroxymethylpiperidine **2a** is also found in the structure of the antimalarial isofebri-fugine **4**.⁷

A number of asymmetric as well as chiron approaches for the synthesis of both 1 and 2 and their stereoisomers are known in the literature. In general, the asymmetric methodologies for trans-configured 1 and 2 are prevalent probably due to the easy outcome of the relative trans stereochemistry, on the adjacent carbon atoms, in the asymmetric pathways⁸ that involve either dihydroxylation or epoxidation followed by attack of the nitrogen nucleophile. As an alternative, chiron approaches^{3,5,9}

(6) (a) Butters, T. D.; Dwek, R. A.; Platt, F. M. *Chem. Rev.* 2000, 100, 4683.
(b) Naoki-Asano, R. J.; Nash, R. J.; Molyneux, G.; Fleet, W. J. *Tetrahedron: Asymmetry* 2000, 11, 1645.
(7) (a) Kuehl, F. A., Jr.; Spencer, C. F.; Folkers, K. J. Am. Chem. Soc. 1948,

(7) (a) Kuehl, F. A., Jr.; Spencer, C. F.; Folkers, K. J. Am. Chem. Soc. **1948**, 70, 2091. (b) Kobayashi, Sh.; Ueno, M.; Suzuki, R. Tetrahedron Lett. **1999**, 40, 2175.

(8) For trans isomer **1b** and its enantiomer, see: (a) Horikawa, M.; Busch-Petersen, J.; Corey, E. J. *Tetrahedron Lett.* **1999**, *40*, 3843. (b) Kumar, P.; Bodas, M. S. J. Org. Chem. **2005**, *70*, 360. (c) Bodas, M. S.; Kumar, P. *Tetrahedron Lett.* **2004**, *45*, 8461. (d) Koulocheri, S. D.; Magiatis, P.; Skaltsounis, A L.; Haroutounian, S. A. *Tetrahedron* **2002**, *58*, 6665. (e) Haddad, M.; Larcheveque, M. *Tetrahedron Lett.* **2001**, *42*, 5223. (f) Battistini, L.; Zanardi, F.; Rassu, G.; Spanu, P.; Pelosi, G.; Fava, G. G.; Ferrari, M. B.; Casiraghi, G. *Tetrahedron: Asymmetry* **1997**, *8*, 2975. (g) Agami, C.; Couty, F.; Mathieu, H. *Tetrahedron Lett.* **1996**, *37*, 4001. (h) Sugisaki, C. H.; Caroll, P. J.; Correia, C. R. *Tetrahedron Lett.* **1998**, *39*, 3413. (i) Kim, I. S.; Ji, Y. J.; Jung, Y. H. *Tetrahedron Lett.* **2006**, *47*, 7289. (j) Kim, I. S.; Oh, J. S.; Zee, O. P.; Jung, Y. H. *Tetrahedron* **2007**, *63*, 2622. (k) Drummond, J.; Johnson, G.; Nickell, D. G.; Ortwine, D. F.; Bruns, R. F.; Welbaum, B. J. *Med Chem.* **1989**, *32*, 2116. (l) Makara, G. M.; Marshall, G. R. *Tetrahedron Lett.* **1997**, *38*, 5069. (m) Scott, J. D.; Williams, R. M. *Tetrahedron Lett.* **2000**, *41*, 8413. (n) Asano, G. K.; Ogawa, H.; Takalmshi, A.; Nozoe, S.; Yokoyama, K. *Chem. Pharm. Bull.* **1987**, *35*, 3482.

^{(1) (}a) Schneider, M. J. Pyridine and Piperidine Alkaloids: An Update. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Pergamon: Oxford, 1996; Vol. 10, p 155. (b) Zografou, E. N.; Tsiropoulos, G. J.; Margaritas, L. H. *Entomol. Exp. Appl.* **1998**, *87*, 125. and references therein.

⁽²⁾ Scott, J. D.; Tippie, T. N.; Williams, R. M. Tetrahedron Lett. 1998, 39, 3659.

⁽³⁾ Ferreira, F.; Greck, C.; Genet, J. P. Bull. Soc. Chim. Fr. 1997, 134, 615.

⁽⁴⁾ For some leading references, see: (a) McNaughton-Smith, G; Hanessian,
S.; Lombart, H. G.; Lubell, W. D. *Tetrahedron* 1997, 53, 12789. (b) Copeland,
T. D.; Wondrak, E. M.; Toszer, J.; Roberts, M. M.; Oraszan, S. *Biochem Biophys. Res. Commun.* 1990, 169, 310. (c) Quibell, M.; Benn, A.; Flinn, N.; Monk, T.;
Ramjee, M.; Wang, Y.; Watts, J. *Bio-org. Med. Chem.* 2004, 12, 5689.
(5) For 2a and 2b, see: (a) Banba, Y.; Abe, C.; Nemoto, H.; Kato, A.;

⁽⁵⁾ For **2a** and **2b**, see: (a) Banba, Y.; Abe, C.; Nemoto, H.; Kato, A.; Adachib, I.; Takahata, H. *Tetrahedron: Asymmetry* **2001**, *12*, 817. (b) Takahata, H.; Banba, Y.; Ouchi, H.; Nemoto, H. *Org. Lett.* **2003**, *5*, 2527. (c) Takahata, H.; Banba, Y.; Ouchi, H.; Nemoto, H.; Adachib, A. J. Org. Chem. **2003**, *68*, 3603. (d) Takahata, H.; Banba, Y.; Sasatani, M.; Nemoto, H.; Katoc, A.; Adachic, I. *Tetrahedron* **2004**, *60*, 8199.

⁽⁹⁾ For 1a and 1b, see: (a) Liang, N.; Datta, A. J. Org. Chem. 2005, 70, 10182. (b) Jourdant, A.; Zhu, J. Tetrahedron Lett. 2000, 41, 7033. For the enantiomer of 1a, see: (c) Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. Tetrahedron: Asymmetry 1993, 4, 625. This paper does not describe the synthesis of the free amino acid but the protected version: N-t-BOC (2R,3S)-3-hydroxymethylpipecolate: (d) Roemmele, R. C.; Rapoport, H. J. J. Org. Chem. 1989, 54, 1866. For the enantiomer of 2b, see: (e) Mocerino, M.; Stick, R. V. Aust. J. Chem. 1990, 43, 1183. For the enantiomer of 2a, see: (f) Enders, D.; Jegelka, U. Synlett 1992, 999. (g) Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. J. Chem. Soc., Perkin Trans. 1 1998, 3673. This paper does not describe the synthesis of the free amino piperidine diol but the protected version: N-t-BOC (2S,3S)-3-hydroxymethylpiperidine. Also see ref 8j.

SCHEME 1. Retrosynthetic Analysis

make use of amino acids, in particular D- or L-serine, in enantioselective synthesis of 1 and 2. We were particularly interested in the synthesis of cis-configured (-)-1a and (-)-2a because of the fact that (i) the literature scrutiny indicates only a few methods for cis isomers 1a/2a and (ii) no chiron approach starting from the carbohydrate precursor, to the best of our knowledge, is reported for the synthesis of either 1 or 2. The first enantioselective synthesis of (-)-1a, accomplished by Corey et al., involves an aldol condensation of silvl ketene acetal of tert-butylglycinate with different achiral aldehydes using cinchonidine alkaloid derived catalyst as a key step to get good stereoselectivity.^{8a} Drummond et al.^{8k} as well as Marshall and Makara⁸¹ reported the synthesis of racemic (\pm)-1a from 3-hydroxypicolinic acid that was later enzymatically resolved by Williams and co-workers using lipase PS.^{8m} Recently, Liang and Datta used D-serine as a chiral template, wherein addition of the homoallyl Grignard reagent to D-serinal afforded high diastereoselectivity in favor of syn-amino alcohol that was elaborated to (-)-1a.9a In the case of 2a, Takahata and co-workers have reported different approaches for 2a and its stereoisomers starting from Garner aldehyde and by exploiting the ring-closing metathesis approach.⁵ In another synthesis, O'Doherty and co-workers¹⁰ utilized the Sharpless asymmetric aminohydroxylation strategy with 2-vinylfurans to give β -hydroxyfurfurylamine in high enantioexcess in the synthesis of tosyl salt of 2a.

As a part of our continuous interest in the synthesis of iminosugars by using carbohydrate as precursors,¹¹ we have devised an altogether different strategy for the synthesis of 1a and 2a using D-glucose as a chiral template. We envisioned that the D-glucose type of symmetry is hidden in the target molecules wherein the required relative cis stereochemistry at C2 and C3 of the vicinal amino acid/alcohol functionalities in 1a and 2a is found to be embedded at C3 and C4, respectively, of 3-azido-3-deoxy-1,2-O-isopropylidene-α-D-xylo-pentodialdo-1,4-furanose A, easily prepared from D-glucose (Scheme 1). Thus, as shown in the retrosynthetic analysis, the two-carbon Wittig homologation of A with Ph₃PCHCOOEt followed by hydrogenation will give access to sugar-substituted δ -lactam **B**. Reduction of the lactam functionality, removal of 1,2-acetonide protection, and cleavage of an anomeric carbon atom by oxidative cleavage will provide N-protected α -amino- β -hydroxy aldehyde C, an immediate precursor with required functionalities and chirality, that on oxidation will afford (-)-1a, while reduction will give (-)-2b. Our synthetic efforts in this direction are described herein.

The required 3-azido-3-deoxy-1,2-O-isopropylidene- α -D-xylopentodialdo-1,4-furanose 5 was prepared from D-glucose as reported earlier.¹² The Wittig olefination of 5 using (carbethoxymethylene)triphenylphosphorane afforded α,β -unsaturated ester 6 as a diastereomeric mixture¹³ of E and Z isomer in a ratio 6:4 as an evident from ¹H NMR of crude product (Scheme 2). Hydrogenation of α,β -unsaturated ester 6 using 10% Pd/C in methanol at 80 psi afforded a tricyclic δ -lactam 7 as a white solid.¹⁴ This one-pot three-step process involves reduction of the double bond, conversion of an azide to amine functionality, and concomitant lactamization to give 7 in high yield. The relative cis sterochemistry at the 6/5-ring junction in 7 is established by a NOESY 1D experiment wherein irradiation of H-3 at δ 3.85 showed 2.9% NOE with H-4 at δ 4.57. In the next step, reduction of the δ -lactam functionality in 7 with LAH in THF afforded piperidine ring skeleton 8 which on reaction with benzyl chloroformate and sodium bicarbonate in ethanolwater gave N-Cbz-protected amine 9.

Treatment of 9 with TFA-water (3:2) at room temperature afforded an anomeric mixture of hemiacetals (as an evident from the ¹H NMR of crude product) that was directly subjected to oxidative cleavage using sodium metaperiodate in acetone-water (to cleave the anomeric carbon) to give α -aminal 10 as a thick oil. The *N*-Cbz-protected α -aminal **10** was found to be relatively unstable and therefore was immediately reacted with sodium chlorite and 30% H₂O₂ using sodium dihydrogen phosphate as a buffer in acetonitrile—water to afford N-Cbz-protected (2S,3R)-3-hydroxypipecolic acid derivative 11 as a sticky gum. In the final step, hydrogenolysis of 11 using 10% Pd/C in methanol at 80 psi afforded (-)-1a as a solid in high yield. The spectral and analytical data for (-)-1a was found to be in consonance with that reported: $[\alpha]^{25}_{D} - 73.8 (c \ 0.10, 1 \ M \ HC1) [lit.² <math>[\alpha]^{20}_{D}$ -72.3 (c 0.10, 1 M HCl)], [α]²⁵_D -54.1 (c 0.6, H₂O) [lit.^{8a} $[\alpha]_{\rm D}$ -52.8 (*c* 0.6, H₂O)].

While targeting to the synthesis of (-)-2a, the *N*-Cbzprotected α -aminal **10** was treated with sodium borohydride in methanol–water that afforded *N*-Cbz-protected piperidine diol **12** as a white solid. Finally, hydrogenolysis of **12** using 10% Pd/C in methanol gave (2*R*,3*R*)-3-hydroxy-2-hydroxymethylpiperidine (-)-**2a**. The spectral and analytical data of (-)-**2a** was found to be in good agreement with that reported: [α]²⁵_D -13.2 (*c* 2.51, H₂O) [lit.¹⁰ [α]²¹_D -12.4 (*c* 2.51, H₂O)].

In conclusion, we have demonstrated the first chiron approach from D-glucose for the total synthesis of (-)-1a and (-)-2a in 15 linear steps with 27% and 25% overall yield, respectively. The sequence involves simple reagents and minimum column purification, high yielding steps that can be elaborated for large scale preparation. The methodology could be readily extended

⁽¹⁰⁾ Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 401.

⁽¹¹⁾ For our recent reports, see: (a) Dhavale, D. D.; Markad, S. D.; Karanjule, N. S.; PrakashaReddy, J. J. Org. Chem. 2004, 69, 4760. (b) Karanjule, N. S.; Markad, S. D.; Dhavale, D. D. J. Org. Chem. 2006, 71, 6273. (c) Karanjule, N. S.; Markad, S. D.; Shinde, V. S.; Dhavale, D. D. J. Org. Chem. 2006, 71, 4667. (d) Dhavale, D. D.; Ajish Kumar, K. S.; Chaudhari, V. D.; Sharma, T.; Sabharwal, S. G.; PrakashaReddy, J. Org. Biomol. Chem. 2005, 3, 3720. (e) Ajish Kumar, K. S.; Chaudhari, V. D.; Puranik, V. G.; Dhavale, D. D. Eur. J. Org. Chem. 2007, 29, 4895. and references cited therein.

⁽¹²⁾ Tronchet, J. M. J.; Gentile, B.; Ojha-Poncet, J.; Moret, G.; Schwarzanbach, D.; Barblat-Ray, F. *Carbohydr. Res.* **1977**, *59*, 87.

⁽¹³⁾ Our attempts to separate the diastereomeric mixture of **6** by flash chromatography were unsuccessful due to the close R_f values; however, we have isolated the *E*-isomer in a small quantity, and its data are given in the Experimental Section. Compound **6** (*E*-isomer) is known; however, no data are reported to be the same. See: Chanderasekhar, S.; Samala, J. P.; Chennamaneni, L. R. *J. Org. Chem.* **2006**, *71*, 2196.

⁽¹⁴⁾ Compound 7 is prepared by a different method in which the nature of the compound and specific rotation is not given; see ref 13. We have isolated compound 7 as a white solid and characterized it independently. The data are given in the Experimental Section.

SCHEME 2. Synthesis of (-)-1a and (-)-2a

for the synthesis of naturally occurring (2S,3R)- β -hydroxylysine and *cis*-3-hydroxyproline, and work in this direction is in progress.

Experimental Section

(E:Z)-Ethyl-1,2-O-isopropylidene-3-azido-3,5,6-trideoxy-α-Dxylo-hept-5-enofuranuronate-pentodialdo-1,4-furanose (6). To a stirred solution of 3-azido-3-deoxy-1,2-O-isopropylidene-a-Dxylo-pentodialdo-1,4-furanose 5 (5 g, 23.47 mmol) in dry dichloromethane (80 mL) was added (carbethoxymethylene)triphenylphosphorane (11.55 g, 35.21 mmol). The reaction mixture was refluxed for 30 min and cooled to 26 °C. Solvent was evaporated under reduced pressure, and the residue on flash column chromatography (*n*-hexane/ethyl acetate = 97/3) afforded the *E*-isomer (0.2 g, 03%) and a diastereometric mixture of E:Z, α,β unsaturated ester **6** as an oil (5.9 g, 89%). Data for *E*-isomer: R_f 0.6 (*n*-hexane/ ethyl acetate = 9/1; $[\alpha]_D - 1.09$ (c 0.95, CHCl₃); IR (neat) 2108, 1717, 1635 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.29 (t, J = 7.2Hz, 3H), 1.34 (s, 3H), 1.51 (s, 3H), 3.95 (d, J = 3.3 Hz, 1H), 4.2 (q, J = 7.2 Hz, 2H), 4.70 (d, J = 3.6 Hz, 1H), 4.84-4.92 (m, 1H),5.96 (d, J = 3.6 Hz, 1H), 6.22 (dd, J = 15.6, 4.5 Hz, 1H), 6.91 (dd, J = 15.6, 4.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 26.6, 26.5, 60.6, 67.2, 78.5, 83.4, 104.4, 112.2, 124.1, 139.6, 165.4. Anal. Calcd for C12H17N3O5: C, 50.88; H, 6.05. Found: C, 50.96; H, 6.28.

2,2-Dimethylperhydro[1,3]dioxolo[4',5':4,5]furo[3,2-b]pyridin-7-one (7). The azido ester 6 (5.8 g, 20.49 mmol) and 10% Pd/C (0.1 g) in methanol (25 mL) was subjected to hydrogenation at room temperature (25 °C) at 80 psi. After 12 h, the solution was filtered through Celite and the residue washed with methanol. Evaporation of solvent on a rotary evaporator and crystallization with *n*-hexane/ethyl acetate = 3/7 gave tricyclic sugar appended δ-lactam 7 (4.18 g, 96%) as a white solid: mp 185–187 °C; R_f 0.3 (ethyl acetate); [α]_D -92.85 (c 0.75, CH₂Cl₂); IR (KBr) 1668, 1411, cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 3H), 1.49 (s, 3H), 1.83-1.98 (m, 1H), 2.20-2.32 (m, 2H), 2.52 (ddd, J = 17.6, 12.9, 6.3 Hz, 1H), 3.81 (d, J = 3.7 Hz, 1H), 4.48 (d, J = 3.7 Hz, 1H), 4.58 (bs, 1H), 5.87 (d, J = 3.7 Hz, 1H), 6.88 (bs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 22.4, 25.6, 26.3, 26.8, 60.4, 71.8, 85.3, 104.8, 112.0, 172.0. Anal. Calcd for C₁₀H₁₅NO₄: C, 56.33; H, 7.09. Found: C, 56.62; H, 7.29.

2,2-Dimethylperhydro[1,3]dioxolo[4',5':4,5]furo[3,2-b]pyridine (8). To a stirred, ice-cold suspension of lithium aluminum hydride (2.14 g, 56.33 mmol) in dry THF (20 mL) was added δ -lactam 7 (4 g, 18.77 mmol) in dry THF (25 mL) over a period of 10 min. The reaction mixture was then stirred for 15 min at

0 °C, allowed to attain at room temperature (25 °C), and then refluxed at 80 °C. After 7 h, reaction mixture was cooled to 25 °C and quenched by slow addition of ethyl acetate (50 mL) followed by saturated solution of aq ammonium chloride (15 mL) and stirred for 2 h. The solution was filtered through Celite, the residue was washed with ethyl acetate, and the filtrate was evaporated under vacuum with column chromatography purification using n-hexane/ ethyl acetate = 3/7 to give amine 8 (3.32 g, 89%) as a pale yellow oil: $R_f 0.3$ (CHCl₃/MeOH = 8/2); $[\alpha]_D + 1.5$ (*c* 1.25, CH₂Cl₂); IR (neat) 3439, 1087 and 1020 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.25 (s, 3H), 1.45 (s, 3H), 1.53-1.80 (m, 2H), 1.82-2.10 (m, 1H), 2.25 (bd, J = 14.3 Hz, 1H), 2.70 (bt, J = 12.3 Hz, 1H), 3.30 (bd, J = 12.3 Hz, 1H), 3.40 (d, J = 1.5 Hz, 1H), 4.30 (d, J = 1.5 Hz, 1H), 4.7 (d, J = 3.6 Hz, 1H), 6.15 (d, J = 3.6 Hz, 1H), 6.75 (bs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 17.3, 23.7, 26.1, 26.3, 43.2, 59.3, 71.2, 82.5, 104.6, 111.8. Anal. Calcd for C₁₀H₁₇NO₃: C, 60.28; H, 8.60. Found: C, 60.09; H, 8.55.

2,2-Dimethylperhydro[1,3]dioxolo-N-benzyloxycarbonyl[4',5': 4,5]furo[3,2-b]pyridine (9). To an ice-cooled solution of 8 (3.2 g, 16.08 mmol) and sodium bicarbonate (5.4 g, 64.32 mmol) in ethanol-water (3:1, 40 mL) was added benzyloxycarbonyl chloride (4.1 g, 24.12 mmol) in ethanol (10 mL). After 3 h, ethanol was removed on a rotary evaporator, and the residue was extracted with dichloromethane (3 \times 20 mL). Usual workup and purification by column chromatography (*n*-hexane/ethyl acetate = 97/3) gave 9 (5.2 g, 98%) as a colorless thick liquid: R_f 0.5 (*n*-hexane/ethyl acetate = 8/2); $[\alpha]_D - 54.8$ (*c* 0.75, CH₂Cl₂); IR (neat) 1705, 1419, 1269, 1078 cm^-1; ¹H NMR (300 MHz, CDCl₃) δ 1.30 (s, 3H), 1.50 (s, 3H), 1.54-1.86 (m, 3H), 2.0-2.12 (m, 1H), 3.20-3.35 (m, 1H), 3.50-3.64 (m, 1H), 4.08 (d, J = 4.9 Hz, 1H), 4.48-4.58 (m, 1H), 4.67 (bd, J = 3.0 Hz, 1H), 5.16 (AB quartet, J = 12.4 Hz, 2H), 5.81 (d, J = 3.8 Hz, 1H), 7.25–7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 17.8, 21.9, 26.3, 26.8, 40.1, 60.7, 67.2, 73.4, 86.2, 104.3, 111.1, 127.8, 127.93, 128.4, 136.4, 156.3. Anal. Calcd for C₁₈H₂₃NO₅: C, 64.85; H, 6.95. Found: C, 65.03; H, 7.16.

(2S,3R)-N-Benzyloxycarbonyl-3-hydroxypiperidine-2-carboxylic Acid (11). An ice-cold solution of 9 (4.9 g, 14.71 mmol) in TFA-H₂O (40 mL, 3:2) was stirred for 15 min and at 25 °C for 7 h. Trifluoroacetic acid was coevaporated with toluene at rotary evaporator using high vacuum to furnish hemiacetal as a thick liquid (crude wt = 3.6 g). To an ice-cooled solution of hemiacetal (2 g, 6.8 mmol) in acetone/water (10 mL, 5:1) was added sodium metaperiodate (2.19 g, 10.23 mmol), and the solution was stirred for 30 min at 25 °C. Ethylene glycol (0.2 mL) was added, solvent was evaporated on rotary evaporator, and the residue was extracted with chloroform (3 × 15 mL). Usual workup afforded α -aminal 10 as a thick liquid (1.5 g). To a stirred solution of 10 (0.46 g,

JOC Note

1.74 mmol) in acetonitrile (10 mL) was added the solution of sodium dihydrogen phosphate (0.05 g, 0.31 mmol) in water (3 mL) and 30% H₂O₂ (0.15 mL, 1.92 mmol). The mixture was stirred and cooled at -10 °C, NaClO₂ (0.25 g, 2.72 mmol) in water (3.5 mL) was added dropwise over 30 min, the reaction mixture was then stirred at 15 °C, and the reaction was monitored by the evolution of oxygen with a bubbler connected to the apparatus. After 10 h, the reaction was decomposed by addition of a small amount of Na₂SO₃ (0.1 g) and acidified with 10% aq HC1 (5 mL). The organic layer was separated, aqueous layer was extracted with ethyl acetate (4 \times 5 mL), the combined organic layer was evaporated, and the residue was dissolved in 10% NaHCO3 solution (25 mL). The bicarbonate layer was washed with ethyl acetate (15 mL) and then made acidic to pH 2 and extracted with ethyl acetate $(3 \times 15 \text{ mL})$. Usual workup gave 11 (0.46 g, 95%) as a sticky gum: $R_f 0.5$ (CHCl₃/MeOH = 8/2); $[\alpha]_D - 13.9$ (*c* 0.42, CH₂Cl₂); IR (KBr) 3600–2870 (br), 1708, 1676, cm⁻¹; ¹H NMR (300 MHz, CDClô 1.40-1.60 (m, 2H), 1.62-1.80 (m, 1H), 1.92-2.12 (m, 1H), 2.75-3.05 (m, 1H), 3.80-4.10 (m, 2H), 4.95-5.20 (m, 3H), 6.80-8.20 (br, 2H, exchangeable with D₂O), 7.30 (s, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 23.4, 29.6, 40.9, 57.6, 68.1, 68.5, 127.6, 127.9, 128.4, 135.7, 156.5, 172.1. The ¹H NMR showed broadening of the signals and ¹³C NMR showed doubling of signals. This could be attributed to the presence of N-Cbz functionality resulting into the rotamers. Anal. Calcd for C₁₄H₁₇NO₅: C, 60.21; H, 6.14. Found: C, 60.50; H, 6.38.

(2*S*,3*R*)-3-hydroxypiperidine-2-carboxylic Acid (-)-1a. A solution of 11 (0.19 g, 0.68 mmol) and 10% Pd/C (0.025 g) in methanol (5 mL) was hydrogenolized at 80 psi for 12 h at 25 °C. The catalyst was filtered through Celite. Evaporation of solvent afforded (-)-1a (96 mg, 98%) as a solid: R_f 0.21 (CHCl₃/MeOH/ 30% NH₄OH = 3/5/2); [α]²⁵_D -73.8 (*c* 0.10, 1 M HCl) [lit.² [α]²⁰_D -72.3 (*c* 0.10, 1 M HCl)], [α]²⁵_D -54.1 (*c* 0.6, H₂O) [lit.^{8a} [α]_D -52.8 (*c* 0.6, H₂O)].

(2R,3R)-N-Benzyloxycarbonyl-3-hydroxy-2-hydroxymethylpiperidine (12). To a stirred solution of 10 (0.5 g, 1.9 mmol) in methanol/water (5 mL, 3:1), maintained at -10 °C, was added sodium borohydride (0.1 g, 2.85 mmol) in portions during 20 min. The resulting solution was stirred for 30 min and allowed to attain room temperature (25 °C). Solvent was evaporated, and the residue was extracted with chloroform (3 × 5 mL). Evaporation of solvent and column purification using *n*-hexane/ethyl acetate = 6.5/3.5 gave **12** (0.47 g, 94%) as a white solid: mp 105–107 °C; *R*_f 0.5 (*n*-hexane/ ethyl acetate = 2/8); [α]_D +6.24 (*c* 0.25, CH₂Cl₂); IR (KBr) 3429, 1670, 1435, 1251, cm⁻¹; ¹H NMR (300 MHz, CDCl₃ + drop of D₂O), δ 1.35–1.90 (m, 4H), 2.9 (bs, 1H), 3.75 (dd, *J* = 11.2, 6.6 Hz, 1H), 3.80–3.98 (m, 2H), 4.10 (dd, *J* = 11.2, 6.1 Hz, 1H), 4. 38– 4.52 (bm, 1H), 5.12 (s, 2H), 7.30 (s, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 2.3.7, 28.3, 40.0, 56.6, 59.1, 67.5, 69.1, 127.7, 128.0, 128.4, 136.3, 156.0. Anal. Calcd for C₁₄H₁₉NO₄: C, 63.38; H, 7.22. Found: C, 63.68; H, 7.33.

(2*R*,3*R*)-2-(Hydroxymethyl)piperidin-3-ol (-)-2a. A solution of 12 (0.3 g, 1.13 mmol) and 10% Pd/C (0.03 g) in methanol (7 mL) was hydrogenolized as described for (-)-1a. Column chromatography purification using CHCl₃/MeOH = 7/3 afforded (-)-2a (0.14 g, 98%) as a thick liquid: R_f 0.25 (CHCl₃/MeOH/30% NH₄OH = 3/4/3); [α]²⁵_D -13.2 (*c* 2.51, H₂O); [lit.¹⁰ [α]²¹_D -12.4 (*c* 2.51, H₂O)].

Acknowledgment. We are grateful to Prof. M. S. Wadia for helpful discussions. We are thankful to DST (GOI-A-492), New Delhi, for financial support. N.B.K. and V.M.K. are thankful to CSIR, New Delhi, for Junior Research Fellowships.

Supporting Information Available: General experimental methods and the copies of ¹H and ¹³C NMR spectra of compounds **6–11**, (–)-**1a**, **12**, and (–)-**2a**. This material is available free of charge via the Internet at http://pubs.acs.org. JO702749R

3622 J. Org. Chem. Vol. 73, No. 9, 2008